Journal of Thermal Analysis and Calorimetry, Vol. 61 (2000) 787–803

EQUILIBRES LIQUIDE-VAPEUR ISOTHERMES DE MELANGES BINAIRES, AMINE+AMINE

B. F. Belaribi¹, G. Belaribi-Boukais¹, A. Ait Kaci¹ et J. Jose²

¹Université des Sciences et de la Technologie Houari Boumédiène, Laboratoire de Thermodynamique des Solutions, BP 139, Dar El Beida, Alger, Algérie ²Université de Lyon I., Laboratoire de Chimie Analytique, 43 Bd du 11 Novembre 1918 69622 Villeurbanne, Lyon, France

(Reçu le 17 Septembre 1998, la forme corrigée 25 Septembre, 1999)

Abstract

The authors have measured the vapour pressure of the binary systems, piperidine+*n*-butylamine, piperidine+dipropylamine, piperidine+N-methyl piperidine, piperidine+N,N-dimethyl amino butane and N-methyl piperidine+*n*-butylamine. The measurements were carried out using an isoten-iscope built by J. Jose [1]. The vapour pressure, excess Gibbs free energies at 298,15, 303,15, 313,15, 323,15, 333,15, and 325,15 K, are reported for these mixtures. The excess Gibbs free energies have been fitted to Redlich-Kister equation.

Keywords: excess Gibbs free energy, piperidine, Redlich-Kister equation, vapour pressure

Introduction

Le développement des théories des solutions liquides est étroitement lié aux données expérimentales. En effet, pour étudier de manière correcte les interactions moléculaires en phase liquide, il est souvent nécessaire de disposer de données thermodynamiques expérimentales relatives aux constituants purs et aux mélanges, qui forment cette phase. Ces données devant être suffisantes en quantité et en qualité, un grand intérêt est accordé à la détermination expérimentale des propriétés thermodynamiques de corps purs et de mélanges.

Afin d'apporter notre contribution à la vérification et au développement de ces théories, nous proposons dans cet article, les données expérimentales d'équilibre liquide-vapeur que nous avons obtenu pour cinq systèmes binaires, amine + amine.

Les diagrammes d'équilibre liquide-vapeur des systèmes binaires, pipéridine+ *n*-butylamine, pipéridine+dipropylamine, pipéridine+N-méthyl pipéridine, pipéridine+ N,N-diméthyl amino butane et N-méthyl pipéridine+*n*-butylamine ont été déterminés à six températures, dans l'intervalle 298,15–343,15 K. Pour cela nous avons mesuré les pressions de vapeur des composés purs et des mélanges binaires à l'aide d'un isoténiscope construit au laboratoire [1]. Les enthalpies libres molaires totales d'excès ont

1418–2874/2000/ \$ 5.00 © 2000 Akadémiai Kiadó, Budapest Akadémiai Kiadó, Budapest Kluwer Academic Publishers, Dordrecht été calculées par la méthode de Barker [2], en représentant les données expérimentales d'équilibre liquide-vapeur à l'aide de l'équation de Redlich-Kister.

Les produits utilisés, d'origine Janssen, n'ont pas subi de purification supplémentaire.

 Tableau 1 Pressions de vapeur expérimentales des constituants purs en fonction de la température

<i>n</i> -but	ylamine	Diprop	ylamine	N,N-diméth	yl amino butane
t/°C	P/Hgmm	t/°C	P/Hgmm	t/°C	P/Hgmm
25,03	95,288	25,00	27,010	25,24	57,582
30,00	120,520	30,00	35,470	30,00	71,863
34,89	150,837	34,77	45,416	35,09	91,260
39,97	188,866	40,00	59,090	40,00	113,559
44,93	232,774	44,91	74,601	44,90	140,149
50,00	285,961	50,00	94,410	50,00	173,354
54,92	346,904	55,03	117,572	55,03	211,675
60,00	420,335	60,02	145,317	60,00	256,476
65,00	504,844	65,00	177,802	65,02	308,815
70,03	601,182	70,00	216,280	70,00	368,723

Tableau 2 Paramètres de lissage obtenus pour l'équation d'Antoine (1)

<i>n</i> -butylamine7,062121223,527215,6590,06Dipropylamine6,746431167,757194,7120,06	Composé	A	В	С	100δ <i>P</i> / <i>P</i>
Dipropylamine 6,74643 1167,757 194,712 0,06	<i>n</i> -butylamine	7,06212	1223,527	215,659	0,06
	Dipropylamine	6,74643	1167,757	194,712	0,06
N,N-diméthyl amino butane 7,13631 1360,339 227,734 0,13	N,N-diméthyl amino butane	7,13631	1360,339	227,734	0,13

 $\delta P/P = IP_{exp} - P_{cal}I/P_{exp}$

Résultats

Pressions de vapeur des constituants purs

Les pressions de vapeur expérimentales des corps purs ont été ajustées par la méthode des moindres carrés itérative à l'aide de l'équation d'Antoine:

$$\log_{10} P = A - \frac{B}{t+C} \tag{1}$$

La pression *P* et la température *t*, expérimentales, sont exprimées en millimètres de mercure et en degrés Celsius, respectivement.

Nous avons réuni, dans le tableau 1, les pressions de vapeur *P* et les températures *t*, expérimentales, dans le tableau 2, les coefficients A, B, C et l'écart relatif moyen $\delta P/P$ exprimé en pourcentage, obtenus après lissage. Nos résultats expérimentaux obtenus

pour les composés, pipéridine et N-méthyl pipéridine, sont reportés dans des articles antérieurs [11, 12].

Pour la plupart des composés purs étudiés, il existe quelques données dans la bibliographie. Pour la *n*-butylamine, le Handbook [14] et une table [13], donnent des pression de vapeur de 91,51 mmHg à 25°C et 427,5 mmHg à 60°C, respectivement. Les écarts relatifs moyens, entre ces valeurs et nos résultats, sont respectivement égaux à 3,7 et 1,7%. Pour ce composé, cette table [13] donne une température d'ébullition normale de 77,80°C et celle publiée par Reid *et coll.* [7] est de 76,35°C, tandis que celle que nous obtenons est de 76,95°C.

Tableau 3 Pression de vapeur en fonction de la température et de la composition

		Système	: Pipéridine (1) – <i>n</i> -Butyla	mine (2)	
X_1			P/k	KPa		
	298,15 K	303,15 K	313,15 K	323,15 K	333,15 K	343,15 K
0,000	12,675	16,068	25,191	38,125	56,040	80,140
0,142	11,551	14,641	22,998	34,889	51,270	73,418
0,325	10,075	12,791	20,101	30,558	45,099	64,725
0,506	8,643	10,946	17,241	26,291	38,922	56,000
0,676	7,077	9,057	14,393	22,109	32,858	47,200
0,850	5,467	7,025	11,293	17,527	26,317	38,440
1,000	4,041	5,255	8,610	13,581	20,712	30,648
$100(\delta P/P)_{moyen}$	0,16	0,10	0,10	0,10	0,08	0,10
		Système	: Pipéridine (l) – Dipropyla	amine (2)	
X_1			P/k	KPa		
	298,15 K	303,15 K	313,15 K	323,15 K	333,15 K	343,15 K
0,000	3,601	4,729	7,878	12,587	19,354	28,835
0,085	3,711	4,849	8,010	12,785	19,650	29,205
0,230	3,852	5,020	8,192	13,080	19,981	29,720
0,441	4,020	5,190	8,398	13,300	20,321	30,135
0,562	4,083	5,270	8,520	13,397	20,484	30,350
0,739	4,115	5,310	8,590	13,517	20,605	30,523
0,896	4,088	5,285	8,620	13,526	20,630	30,605
1,000	4,041	5,255	8,610	13,581	20,712	30,648
$100(\delta P/P)_{moyen}$	0,10	0,09	0,08	0,12	0,01	0,04

	S	ystème : Pipéi	ridine $(1) - N$,	N-diméthyl a	mino butane (2)
X_1			P/F	KPa		
	298,15 K	303,15 K	313,15 K	323,15 K	333,15 K	343,15 K
0,000	7,563	9,581	15,140	23,112	34,194	49,159
0,127	7,241	9,220	14,520	22,226	32,941	47,642
0,306	6,680	8,530	13,529	20,748	30,832	44,666
0,454	6,268	8,020	12,766	19,609	29,147	42,252
0,601	5,841	7,459	11,851	18,219	27,253	39,655
0,763	5,284	6,756	10,711	16,609	24,977	36,503
0,916	4,633	5,937	9,498	14,780	22,380	33,012
1,000	4,041	5,255	8,610	13,581	20,712	30,648
$100(\delta P/P)_{moyen}$	0,17	0,15	0,14	0,10	0,08	0,10
		Système : P	pipéridine (1) -	– N-méthyl pi	péridine (2)	
X1			P/\mathbf{k}	KPa		
	298,15 K	303,15 K	313,15 K	323,15 K	333,15 K	343,15 K
0,000	5,216	6,674	10,568	16,320	24,426	35,545
0,052	5,074	6,511	10,423	16,122	24,202	35,328
0,258	4,872	6,256	9,998	15,510	23,394	34,202
0,464	4,692	6,035	9,662	15,042	22,701	33,242
0,652	4,436	5,795	9,346	14,567	22,022	32,272
0,820	4,386	5,637	9,067	14,104	21,361	31,434
1,000	4,041	5,255	8,610	13,581	20,712	30,648
$100(\delta P/P)_{moyen}$	0,69	0,34	0,07	0,11	0,07	0,06
		Système : N-	méthyl pipério	dine $(1) - n$ -B	utylamine (2)	
X_1			P/\mathbf{k}	KPa		
	298,15 K	303,15 K	313,15 K	323,15 K	333,15 K	343,15 K
0,000	12,675	16,068	25,191	38,125	56,040	80,140
0,112	11,967	15,186	23,757	35,987	52,902	75,618
0,279	10,820	13,732	21,524	32,615	47,898	68,629
0,469	9,453	12,012	18,868	28,658	42,225	60,594
0,656	8,077	10,274	16,167	24,626	36,368	52,355
0,813	6,814	8,683	13,709	20,971	31,039	44,870
0,954	5,649	7,187	11,358	17,422	26,021	37,919
1,000	5,216	6,674	10,568	16,320	24,426	35,545
$100(\delta P/P)_{moyen}$	0,15	0,11	0,06	0,11	0,09	0,05

Fig. 1 Diagramme expérimental d'équilibre liquide-vapeur du système Pipéridine (1) – *n*-Butylamine (2) à trois températures, a: o – 313,15 K; x – 303,15 K; · – 298,15 K, b: Les courbes sont calculées à partir de l'équation 4. b: Δ – 343,15 K; * – 333,15 K; + – 323,15 K

Fig. 2 Diagramme expérimental d'équilibre liquide-vapeur du système Pipéridine (1) – Dipropylamine (2) à trois températures, a: o – 313,15 K; x – 303,15 K; · – 298,15 K, b: Les courbes sont calculées à partir de l'équation 4. b: Δ – 343,15 K; * – 333,15 K; + – 323,15 K

Les pressions de vapeur de la dipropylamine, à 10, 20, 30 et 39,95°C, données dans cette table [13], sont respectivement égales à 10,1, 20,1, 34,7 et 57,6 mmHg, et présentent un écart relatif moyen de 1% par rapport à nos résultats.

Pour la N,N-diméthyl amino butane nous ne disposons pas de données de comparaison.

Nos données sont en accord avec celles de la littérature [3, 4, 5, 7, 13, 14].

Fig. 3 Diagramme expérimental d'équilibre liquide-vapeur du système Pipéridine (1) – N,N-diméthyl amino butate (2) à trois températures, a: o – 313,15 K; x – 303,15 K; · – 298,15 K, b: Les courbes sont calculées à partir de l'équation 4. Δ – 343,15 K; * – 333,15 K; + – 323,15 K

Fig. 4 Diagramme expérimental d'équilibre liquide-vapeur du système Pipéridine (1) – N-méthyl pipéridine (2) à trois températures, a: o – 313,15 K; x – 303,15 K; · – 298,15 K, b: Les courbes sont calculées à partir de l'équation 4. b: Δ – 343,15 K; * – 333,15 K; + – 323,15 K

Pressions de vapeur des mélanges binaires

Les pressions de vapeur des cinq systèmes ont été mesurées à six températures, dans l'intervalle 298,15–343,15 K. Les résultats expérimentaux sont donnés dans le tableau 3, et sont représentés par les figures 1 à 5. Dans le tableau 3, nous avons réuni, pour chaque système, et à chaque température, la fraction molaire x_1 du constituant 1 dans la phase liquide, la pression totale *P* ainsi que l'écart relatif moyen $\delta P/P$ exprimé en pourcentage.

Pour calculer l'enthalpie libre molaire totale d'excès et la composition du vapeur, nous avons utilisé la méthode de Barker [2]. Ce calcul fait intervenir le

volume molaire v_{i}° et le second coefficient molaire du viriel B_{ii} , de chaque composé, à chaque température.

Pour tous les constituants, nous avons déterminé les volumes molaires en utilisant des données de la littérature [5–7], et calculé les seconds coefficients molaires du viriel par la méthode de Tsonopoulos [9, 10]. Les valeurs de ces deux propriétés de corps purs ont été réunies dans le tableau 4. Le second coefficient molaire croisé du viriel, B_{12} , relatif au mélange, est pris comme combinaison linéaire de ceux des constituants purs.

	<i>n</i> -Buty	lamine	Diprop	ylamine	N,N-diméthy	l amino butane
T/K	v_i^{o}	$-B_{ii}$	$v_i^{ m o}$	$-B_{ii}$	$v_i^{ m o}$	$-B_{\rm ii}$
				$10^{-6} \text{ m}^3 \text{ mc}$	pl^{-1}	
298,15	98,9	1645	137,8	3412	141,5	2645
303,15	99,6	1565	138,6	3216	142,5	2511
313,15	100,8	1424	140,4	2878	144,4	2276
323,15	102,2	1304	142,2	2596	146,4	2077
333,15	103,5	1200	144,0	2358	148,4	1907
343,15	105,0	1110	145,9	2155	150,5	1759

 Tableau 4 Volumes molaires à l'état liquide, et seconds coefficients molaires du viriel, des constituants purs

Les enthalpies libres molaires totales d'excès ont été représentées à l'aide de l'équation de Redlich-Kister:

$$\frac{g^{\rm E}}{RT} = x_1 x_2 \sum_{i=1}^{n} A_i (x_1 - x_2)^{i-1}$$
(2)

où: x_i est la fraction molaire du constituant *i* dans le mélange liquide.

Les valeurs de l'enthalpies libre molaire totale d'excès g^{E} , celles des paramètres de lissage A_{i} , ainsi que les déviations standards σA_{i} de ces paramètres, sont réunies dans les tableaux 5 à 9.

Tableau 5 Enthalpie libre molaire totale d'excès, g^E , et paramètres de lissage du
Système : Pipéridine (1) - n-Butylamine (2)

-			$g^{ m E}$ /J mol $^{-1}$			
<i>x</i> ₁	298,15	303,15	313,15	323,15	333,15	343,15
0,0	0	0	0	0	0	0
0,1	35	31	27	26	24	14
0,2	58	52	45	43	40	23
0,3	71	65	57	54	50	28
0,4	76	70	62	59	54	29
0,5	73	68	61	59	53	27
0,6	64	61	55	53	48	23
0,7	51	50	46	44	39	17
0,8	35	35	33	32	28	11
0,9	18	18	17	17	15	5
1,0	0	0	0	0	0	0
	Paramètres de lissa		ge de l'équatio	n de Redlich-I	Kister	
T/K		A_1	σA_1	A_2		σA_2
298,15	0,1173		0,0074	-0,04	87	0,0140
303,15	5 0,1079		0,0038	-0,03	52	0,0072
313,15	0,0937		0,0034	-0,02	54	0,0066
323,15	0,0871		0,0037	-0,02	32	0,0072
333,15	0,	,0765	0,0027	-0,02	29	0,0053
343,15	0,	,0374	0,0037	-0,02	26	0,0074

Pour chaque système et à chaque température nous avons calculé, la fraction molaire y_1 du composé 1 dans la phase vapeur ainsi que la pression totale P, pour des fractions molaires x_1 variant à intervalle régulier. Les équations utilisées sont:

$$y_{i} = \frac{P_{i}^{\circ} x_{i}}{P} \exp\left(\frac{g_{i}^{E} - (B_{ii} - v_{i}^{\circ})(P - P_{i}^{\circ}) - 2PB_{12}^{E}(1 - y_{i})^{2}}{RT}\right)$$
(3)

$$P = \sum_{i=1}^{2} x_{i} P_{i}^{o} \exp\left(\frac{g_{i}^{E} - (B_{ii} - v_{i}^{o})(P - P_{i}^{o}) - 2PB_{12}^{E}(1 - y_{i})^{2}}{RT}\right)$$
(4)

			$g^{ m E}/{ m J}$ 1	$g^{\mathrm{E}}/\mathrm{J} \mathrm{mol}^{-1}$		
<i>x</i> ₁	298,15	303,15	313,15	323,15	333,15	343,15
0,0	0	0 0		0	0	0
0,1	44	39	21	27	24	22
0,2	82	71	39	45	40	37
0,3	112	95	53	55	49	46
0,4	132	110	62	58	52	50
0,5	143	117	66	56	50	49
0,6	142	114	65	50	45	44
0,7	128	101	59	40	36	36
0,8	101 78		46	27	25	25
0,9	58 45		27	14	13	13
1,0	0 0		0 0 0		0	0
	Paramètres de lissag		ge de l'équatio	n de Redlich-k	Kister	
T/K	A_1		σA_1	A_2		σA_2
298,15	0,2302		0,0025	0,039	7	0,0067
303,15	0,1853		0,0026	0,015	0	0,0070
313,15	0,1017		0,0023	0,014	-0	0,0062
323,15	0,	0,0838		-0,034	43	0,0072
333,15	0,	0728	0,0023	-0,02	85	0,0060
343,15	0,	0681	0,0013	-0,022	20	0,0034

Tableau 6 Enthalpie libre molaire totale d'excès, g^{E} , et paramètres de lissage du Système : Pipéridine (1) – Dipropylamine (2)

Tableau 7 Enthalpie libre molaire totale d'excès, g^{E} , et paramètres de lissage du Système :Pipéridine (1) – N,N-diméthyl amino butane (2)

			$g^{ m E}/{ m J}$ 1	g^{E} /J mol ⁻¹		
<i>x</i> ₁	298,15	303,15	313,15	323,15	333,15	343,15
0,0	0	0	0	0	0	0
0,1	44	51	42	41	39	47
0,2	81	89	77	74	69	77
0,3	113	118	105	99	93	97
0,4	142	142	125	115	109	109
0,5	165	159	136	124	117	115
0,6	180	169	137	123	118	116
0,7	181	165	126	113	108	109
0,8	158	142	102	90	87	91
0,9	102	91	61	53	52	57
1,0	0	0	0	0	0	0

Tableau 7 Suite

Système : Pipéridine (1) – N,N-diméthyl amino butane (2)

T/K	A_1	σA_1	A_2	σA_2	A_3	σA_3
298,15	0,2667	0,0063	0,1630	0,0136	0,0959	0,0264
303,15	0,2526	0,0066	0,1112	0,0142	0,0929	0,0276
313,15	0,2090	0,0050	0,0499	0,0112	0,0183	0,0217
323,15	0,1845	0,0042	0,0309	0,0093	0,0163	0,0182
333,15	0,1695	0,0033	0,0336	0,0073	0,0194	0,0144
343,15	0,1612	0,0044	0,0253	0,0096	0,0631	0,0194

Paramètres de lissage de l'équation de Redlich-Kister

Tableau 8 Enthalpie libre molaire totale d'excès, g^E, et paramètres de lissage du Système : Pipéridine (1) – N-méthyl pipéridine (2)

			$g^{ m E}$ /J 1	mol ⁻¹		
x_1	298,15	303,15	313,15	323,15	333,15	343,15
0,0	0	0 0		0	0	0
0,1	-24	-22	-14	-10	-3	-1
0,2	-29	-26	-17	-13	-5	-2
0,3	-22	-18	-13	-12	-5	-3
0,4	-6	-3	-4	-8	-4	-5
0,5	13	16	8	-2	-3	-6
0,6	31	34	18	4	-1	_7
0,7	44	46	26	9	0	_7
0,8	46 47		27	11	1	-6
0,9	33 33		19	8	1	_4
1,0	0 0		0	0	0	0
	Paramètres de lissas		ge de l'équatio	n de Redlich-K	Lister	
T/K	A_1		σA_1	A_2		σA_2
298,15	3,15 0,0210		0,0251	0,1586		0,0670
303,15	0,0259		0,0134	0,1508		0,0358
313,15	0,0119		0,0027	0,087	9	0,0071
323,15	-0	-0,0027		0,046	4	0,0102
333,15	-0	,0040	0,0026	0,011	5	0,0068
343,15	-0	,0086	0,0025	-0,007	79	0,0065

			$g^{ m E}$ /J 1	mol ⁻¹		
<i>x</i> ₁	298,15	303,15	313,15	323,15	333,15	343,15
0,0	0	0	0	0	0	0
0,1	32	33	34	34	32	32
0,2	56	57	59	58	55	55
0,3	71	72	75	74	70	72
0,4	78	79	83	82	78	80
0,5	79	79	84	83	79	82
0,6	73	72	79	77	73	77
0,7	62	60	67	65	62	66
0,8	45	43	49	48	45	50
0,9	25	23	27	26	25	27
1,0	0	0	0	0	0	0
	Paramètres de lissag		ge de l'équatio	n de Redlich-k	Kister	
T/K		A_1	σA_1	A_2		σA_2
298,15	0,	1275	0,0056	-0,02	16	0,0116
303,15	0,	1245	0,0050	-0,02	84	0,0104
313,15	5 0,1297		0,0024	-0,01	84	0,0051
323,15	0,1232		0,0034	-0,02	13	0,0072
333,15	0,	1134	0,0032	-0,01	85	0,0068
343,15	0,	1150	0,0036	-0,01	07	0,0036

Tableau 9 Enthalpie libre molaire totale d'excès, g^E , et paramètres de lissage du
Système : N-méthyl pipéridine (1) - n-Butylamine (2)

Fig. 6 Equilibre liquide-vapeur pour le système Pipéridine (1) – *n*-Butylamine (2) à deux températures, o – 343,15 K et · – 298,15 K. Les points sont les valeurs expérimentales. Les courbes représentent les valeurs calculées à l'aide des équations 3 et 4

	Pipé	ridine (1) – <i>n</i> -Butyla	mine (2)	
Υ.	<i>T</i> =298,15 K		Т=343,15 К	
A]	P/KPa	<i>y</i> 1	P/KPa	<i>Y</i> 1
0,0	12,675	0,000	80,140	0,000
0,1	11,887	0,039	75,438	0,043
0,2	11,102	0,079	70,717	0,091
0,3	10,308	0,125	65,948	0,144
0,4	9,493	0,177	61,108	0,206
0,5	8,651	0,239	56,186	0,277
0,6	7,778	0,315	51,178	0,363
0,7	6,874	0,414	46,095	0,469
0,8	5,942	0,545	40,956	0,602
0,9	4,994	0,729	35,793	0,773
1,0	4,041	1,000	30,648	1,000
	Pipér	ridine (1) – Dipropyla	amine (2)	
	<i>T</i> =298,15 K		<i>T</i> =343,15 K	
<i>x</i> ₁	P/KPa	\mathcal{Y}_1	P/KPa	<i>y</i> ₁
0,0	3,601	0,000	28,835	0,000
0,1	3,723	0,128	29,264	0,112
0,2	3,830	0,243	29,607	0,217
0,3	3,920	0,347	29,880	0,317
0,4	3,994	0,443	30,095	0,415
0,5	4,051	0,534	30,261	0,512
0,6	4,091	0,620	30,387	0,609
0,7	4,112	0,707	30,482	0,706
0,8	4,114	0,796	30,552	0,803
0,9	4,092	0,892	30,604	0,901
1,0	4,041	1,000	30,648	1,000
	Pipéridine ((1) – N,N-diméthyl a	mino butane (2)	
	<i>T</i> =298,15 K		<i>T</i> =343	,15 K
<i>x</i> ₁	P/KPa	<i>y</i> 1	P/KPa	<i>Y</i> 1
0,0	7,563	0,000	49,159	0,000
0,1	7,293	0,065	47,884	0,074
0,2	7,012	0,133	46,446	0,146
0,3	6,721	0,206	44,875	0,222
0,5	6,128	0,368	41,444	0,390
0,6	5,827	0,455	39,629	0,484

Tableau 10 Pression et composition de la phase vapeur, calculées du système:

r —	<i>T</i> =298,15 K		<i>T</i> =343,15 K	
\mathcal{X}_1	P/KPa	y_1	P/KPa	y_1
0,7	5,513	0,546	37,741	0,585
0,8	5,161	0,649	35,726	0,698
0,9	4,715	0,780	33,452	0,829
1,0	4,041	1,000	30,648	1,000
	Pipéridi	ne (1) – N-méthyl pir	péridine (2)	
	<i>T</i> =298,15 K		<i>T</i> =343,15 K	
x_1	P/KPa	y_1	P/KPa	y_1
0,0	5,216	0,000	35,545	0,000
0,1	5,056	0,075	35,047	0,087
0,2	4,921	0,163	34,544	0,177
0,3	4,809	0,259	34,037	0,269
0,4	4,716	0,358	33,530	0,364
0,5	4,633	0,456	33,024	0,463
0,6	4,552	0,554	32,523	0,564
0,7	4,464	0,652	32,031	0,669
0,8	4,360	0,753	31,551	0,777
0,9	4,226	0,865	31,089	0,887
1,0	4,041	1,000	30,648	1,000
	N-méthyl	pipéridine (1) – <i>n</i> -Bu	ıtylamine (2)	
	<i>T</i> =298,15 K		<i>T</i> =343,15 K	
x_1	P/KPa	y_1	P/KPa	y_1
0,0	12,675	0,000	80,140	0,000
0,1	12,012	0,049	76,051	0,053
0,2	11,344	0,101	71,949	0,109
0,3	10,665	0,157	67,804	0,169
0,4	9,969	0,219	63,590	0,236
0,5	9,251	0,291	59,280	0,312
0,6	8,506	0,375	54,850	0,400
0,7	7,732	0,477	50,277	0,503
0,8	6,925	0,606	45,545	0,630
0,9	6,086	0,773	40,638	0,790
1,0	4,041	1,000	35.545	1.000

Tableau 10 Suite

ъE

$$B = B_{12} - (B_{11} + B_{22})$$

$$\frac{g_1^{\rm E}}{RT} = x_2^2 (A_1 + \sum_{i=1}^{n} A_i ((2i-1)x_1 - x_2)(x_1 - x_2)^{i-1})$$

$$\frac{g_2^{\rm E}}{RT} = x_1^2 (A_2 + \sum_{i=1}^{n} A_i (x_1 - (2i-1)x_2)(x_1 - x_2)^{i-1})$$

ת

Pour illustrer ce calcul, nous avons choisi les deux températures extrêmes. Nous avons réuni les résultats dans le tableau 10, et représenté les diagrammes d'équilibre liquide-vapeur (P, x_1, y_1) sur les figures 6 à 10.

Fig. 7 Equilibre liquide-vapeur pour le système Pipéridine (1) – Dipropylamine (2) à deux température, o – 343,15 K et · − 298,15 K. Les points sont les valeurs expérimentales. Les courbes représentent les valeurs calculées à l'aide des équations 3 et 4

Fig. 8 Equilibre liquide-vapeur pour le système Pipéridine (1) – N,N-diméthyl amino butane (2) à deux température, o – 343,15 K et · − 298,15 K. Les points sont les valeurs expérimentales. Les courbes représentent les valeurs calculées à l'aide des équations 3 et 4

Fig. 9 Equilibre liquide-vapeur pour le système Pipéridine (1) – N-méthylpipéridine (2) à deux température, o – 343,15 K et · – 298,15 K. Les points sont les valeurs expérimentales. Les courbes représentent les valeurs calculées à l'aide des équations 3 et 4

Fig. 10 Equilibre liquide-vapeur pour le système N-méthyl pipéridine (1) – n-Butylamine (2) à deux température, o – 343,15 K et · – 298,15 K. Les points sont les valeurs expérimentales. Les courbes représentent les valeurs calculées à l'aide des équations 3 et 4

Conclusion

Nos valeurs expérimentales, de pression de vapeur de corps purs, sont en accord avec les données correspondantes de la littérature (3, 4, 5, 7, 13, 14). Pour les cinq systèmes binaires, nous ne disposons pas de données de comparaison.

Pour le système pipéridine+*n*-butylamine, dans tout le domaine de composition, l'enthalpie libre molaire totale d'excès g^{E} est positive et diminue avec l'augmentation

de la température. Dans tout l'intervalle de température considéré, les valeurs maximales de cette grandeur varient entre 30 et 75 J mol⁻¹, et correspondent aux mélanges dont la fraction molaire x_1 de la pipéridine est comprise entre 0,4 et 0,45.

Pour le système N-méthyl pipéridine+n-butylamine, l'enthalpie libre molaire totale d'excès est positive aussi dans tout le domaine de température et de composition. Elle ne varie pas beaucoup avec la température, et présente un maximum pour des mélanges équimolaires. Relativement au système précédent, les valeurs d'enthalpie libre molaire totale d'excès sont un peu plus grandes.

Les systèmes, pipéridine+dipropylamine et pipéridine+N,N-diméthyl amino butane présentent des enthalpies libres molaires totales d'excès qui diminuent avec l'augmentation de température, tout en restant positives, dans tout le domaine de composition. Les valeurs maximales de g^{E} , sont obtenues pour des mélanges dont la composition en pipéridine est comprise entre 0,4 et 0,6 dans le cas du système pipéridine+dipropylamine, et entre 0,55 et 0,65 pour le système pipéridine+N,N-diméthyl amino butane.

A 343,15 K, l'enthalpie libre molaire totale d'excès du système pipéridine+ N-méthyl pipéridine est négative dans tout le domaine de composition. Dans l'intervalle 298,15–333,15 K, g^{E} reste négative pour les mélanges dont la composition en pipéridine est inférieure à 0,5, mais devient positive au delà de cette composition.

Ainsi, pour les mélanges pipéridine+amine, pour une même température, l'enthalpie libre molaire totale d'excès augmente lorsque l'on passe de l'amine cyclique à l'amine tertiaire.

Les résultats expérimentaux d'équilibre liquide-vapeur faisant l'objet du présent article, nos données anterieures [11–12], ainsi que quelques données sélectionnées de la littérature [15–24], nous serviron à appliquer la théorie du réseau rigide dans version contribution de groupements fonctionnels [8]. Cette application rentre dans le cadre d'une étude des interactions moléculaires, dans certains mélanges binaires liquides contenant des molécules polaires ou fortement polaires.

Bibliographie

- 1 J. Jose, Thèse de Doctorat de 3º Cycle, Lyon I, 1970.
- 2 J. A. Barker, Austr. J. Chem., 6 (1953) 23.
- 3 E. Hala et T. Boublik, Vapour Pressure of Compounds, Elsevier, 1973.
- 4 S. Cabani et N. Ceccanti, J. Chem. Thermodyn., 5 (1973) 9.
- 5 J. Timmermans, Physico-Chemical Constantes of Pure Organic Compounds, Vols 1 and 2, Elsevier, Amsterdam 1950.
- 6 Physical Properties of Chemical Compounds, Volumes I and II, Advanced Chemical Series 1959.
- 7 R. C. Reid, J. M. Prausnitz et B. E. Poling, The Properties of Gases and Liquids, 4th Edition MacGraw Hill 1987.
- 8 H. V. Kehiaian, J. P. Grolier et G. C. Benson, J. Chem. Phys., 11/12 (1978) 75.
- 9 C. Tsonopoulos, AICHE J., 20, (1974) 263.
- 10 C. Tsonopoulos, AICHE J., 21, (1974) 867.
- 11 B. F. Belaribi, A. Ait Kaci et J. Jose, J. Thermal Anal., 44 (1995) 1177.

- 12 B. F. Belaribi, G. Belaribi-Boukais, A. Ait Kaci et J. Jose, J. Thermal Anal., 44 (1995) 911.
- 13 Landolt-Börnstein, Thermodynamic Equilibria of Boiling Mixtures, Numerical Data and Functional Relationships in Science and Technologie, New Series, Group IV., Vol. 3, 1975.
- 14 Handbook of Chemistry and Physics 1992–1993.
- 15 B. F. Belaribi, H. Delepine, A. Ait-Kaci, ELDATA; Int. Electron. J. Phys.-Chem. Data 1997, 3, 73–76.
- 16 M. R. Tine et H. V. Kehiaian, Fluid Phase Equilibria, 32 (1987) 211.
- 17 H. V. Kehiaian, M. R. Tine, L. Lepori, E. Matteoli et B. Marongiu, Fluid Phase Equilibria, 46 (1989) 131.
- 18 H. V. Kehiaian et M. R. Tine, Fluid Phase Equilibria, 59 (1990) 233.
- 19 I. Velasco, J. Fernandez, S. Otin et H. V. Kehiaian, Fluid Phase Equilibria, 69 (1991) 15.
- 20 B. F. Belaribi, G. Belaribi-Boukais et A. Ait Kaci, ELDATA; Int. Electron. J. Phys.-Chem. Data 1997, 3,191–196.
- 21 B. F. Belaribi, G. Belaribi-Boukais et A. Ait Kaci, ELDATA; Int. Electron. J. Phys.-Chem. Data 1998, 4, 59–66.
- 22 D. Sahki, B. F. Belaribi et A. Ait Kaci, ELDATA; Int. Electron. J. Phys.-Chem. Data 1999, 5, 39–42.
- 23 D. Sahki, B. F. Belaribi, A. Ait Kaci et . Jose, ELDATA; Int. Electron. J. Phys.-Chem. Data 1999, 5, 85–96.
- 24 B. F. Belaribi, B. F. Belaribi-Boukais, A. Ait Kaci et J. Jose, Fluid Phase Equilibria, 167 (2000) 83.